» » An Invitation to Web Geometry

Information of news
10-04-2015, 01:13

An Invitation to Web Geometry

Category: E-Books

An Invitation to Web Geometry

An Invitation to Web Geometry
Springer | Pure Mathematics | Feb. 24 2015 | ISBN-10: 3319145614 | 229 pages | pdf | 3.31 mb

by Jorge Pereira (Author), Luc Pirio (Author)
From the Back Cover
This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which webs are carrying the maximal possible number of abelian relations.

The book offers complete proofs of both Chern’s bound and Trépreau’s algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented.

About the Author
Jorge Vitorio Pereira is a Research Associate at IMPA (Instituto Nacional de Matematica Pura e Aplicada). Luc Pirio leads research efforts at CNRS.

Content Level Research

Keywords Abelian relations - Abel’s addition Theorem - Conormals of webs of maximal rank - Global webs - Planar 3-webs

Related subjects Algebra - Analysis - Geometry & Topology



Site BBcode/HTML Code:
Dear visitor, you went to the site as unregistered user.
We recommend you Sign up or Login to website under your name.
Would you like to leave your comment? Please Login to your account to leave comments. Don't have an account? You can create a free account now.

Tag Cloud

archive of news

free html hit counter