﻿ Coursera - Introduction to Mathematical Philosophy » GFXHome | Best CG / VFX Resources for Artists!

» » » Coursera - Introduction to Mathematical Philosophy

Information of news
22-08-2015, 19:21

Coursera - Introduction to Mathematical Philosophy

Category: Tutorials / Other

Coursera - Introduction to Mathematical Philosophy
English | 2015 | mp4 | H264 960x540 | AC 2 ch | pdf | 1.49 GB
eLearning

Learn how to apply mathematical methods to philosophical problems & questions.
Since antiquity, philosophers have questioned the foundations--the foundations of the physical world, of our everyday experience, of our scientific knowledge, & of culture & society. In recent years, more & more young philosophers have become convinced that, in order to underst& these foundations, & thus to make progress in philosophy, the use of mathematical methods is of crucial importance. This is what our course will be concerned with: mathematical philosophy, that is, philosophy done with the help of mathematical methods.

As we will try to show, one can analyze philosophical concepts much more clearly in mathematical terms, one can derive philosophical conclusions from philosophical assumptions by mathematical proof, & one can build mathematical models in which we can study philosophical problems.

So, as Leibniz would have said: even in philosophy, calculemus. Let's calculate.

Course Syllabus

Week One: Infinity (Zeno's Paradox, Galileo's Paradox, very basic set theory, infinite sets).

Week Two: Truth (Tarski's theory of truth, recursive definitions, complete induction over sentences, Liar Paradox).

Week Three: Rational Belief (propositions as sets of possible worlds, rational all-or-nothing belief, rational degrees of belief, bets, Lottery Paradox).

Week Four: If-then (indicative vs subjunctive conditionals, conditionals in mathematics, conditional rational degrees of belief, beliefs in conditionals vs conditional beliefs).

Week Five: Confirmation (the underdetermination thesis, the Monty Hall Problem, Bayesian confirmation theory).

Week Six: Decision (decision making under risk, maximizing xpected utility, von Neumann Morgenstern axioms & representation theorem, Allais Paradox, Ellsberg Paradox).

Week Seven: Voting (Condorcet Paradox, Arrows Theorem, Condorcet Jury Theorem, Judgment Aggregation).

Week Eight: Quantum Logic & Probability (statistical correlations, the CHSH inequality, Boolean & non-Boolean algebras, violation of distributivity)

Recommended Background
We will not presuppose more than bits of high school mathematics.
We will give you lists of additional references later in the course.

Screenshots:

Site BBcode/HTML Code:
Dear visitor, you went to the site as unregistered user.