» » Coursera - Behavioral Genetics

Information of news
  • Author: kityvn
  • Date: 5-09-2015, 10:45
5-09-2015, 10:45

Coursera - Behavioral Genetics

Category: Tutorials

One of psychology's defining issues concerns the origins of individual differences in behavior: Why are some people outgoing and cheerful while others are withdrawn and forlorn? Why do some struggle academically while others excel at school despite minimal study? Why do some suffer the ravages of a psychotic illness like schizophrenia while others enjoy a life free of mental illness? At the core to answering these questions is the ages-old "nature-nurture" debate: Are the behavioral differences among us due predominantly to inborn natural differences or the cumulative impact of our experiences? The nature-nurture debate generated much controversy and acrimony within psychology, although today most are willing to retire the debate and declare both sides victorious.
This course provides an introduction to behavioral genetics, the field within psychology that demonstrated that Nature and Nurture both play a fundamental role in the development of psychological traits. We will explore how early behavioral genetic research radically changed how psychologists conceptualized human behavior and how the mapping of the human genome is fundamentally altering current research approaches to a wide range of behavioral characteristics. The course will cover the traditional behavioral genetic methodologies of twin and adoption studies as well as modern approaches based on molecular genetic techniques.

Upon completion of the course, students should have a basic understanding of

how behavioral genetic research has changed psychology's view of human behavior;
the strengths and limitations of traditional behavioral genetic methodologies such as twin and adoption studies;
the behavioral genetic approach to psychiatric phenotypes (to be illustrated by schizophrenia) and psychological phenotypes (to be illustrated by intelligence); and
the structure and function of the human genome and the prospects for identifying the specific genetic variants underlying individual differences in behavior.
What is New in Session 2?

This course was first offered in 2014. The major changes in this second offering of the course include

Students have the option of obtaining a Statement of Accomplishment with Distinction
Eight of the lecture modules have been re-recorded. Usually this was to allow us to incorporate recent research findings into the lecture; in a few cases the lectures were somewhat restructured. The re-recorded lectures are identified in the weekly welcome message.
There are eight new supplementary lectures, one for each weekly unit. These supplementary lectures allow us to cover more advanced topics (e.g., epigenetic inheritance, race, ancestry and genetics, genetic prediction.) The supplementary lectures are not covered in the weekly quizzes and so are not required for students seeking the typical Statement of Accomplishment. The supplementary lectures are, however, required for those seeking to obtain a Statement of Accomplishment with Distinction.
Course Syllabus
Unit #1: Introduction and Overview

Topics covered:

The nature-nurture debate and the founding of behavioral genetics; the eugenics movement; what is behavioral genetics?; the "John/Joan" case: when the blank slate model failed; Phenylketonuria: every geneticist's favorite disorder. Supplemental: Huntington disease.

Unit #2: How Twins Saved Psychology

Topics covered:

Twins: a natural experiment; assessing twin similarity; what twin studies have revealed about the origins of behavior; are twin studies of behavior really valid?; adoption studies: not by twins alone; Minnesota Study of Twins Reared Apart (MISTRA). Supplemental: Interview with Thomas J. Bouchard, Jr.

Unit #3: Heritability, a Much Maligned and Misunderstood Concept

Topics covered:

Mendelian inheritance (and terminology); Galtonian inheritance (aka quantitative genetics); how heritability is estimated; what heritability is and what it is not; gene-environment interaction. Supplemental: Multivariate biometric approaches.

Unit #4: What Everyone Should Know About the Human Genome

Topics covered:

DNA; what is a gene?; three surprising findings from the human genome project; the nature of genetic variation; Williams syndrome; the X chromosome; Prader-Willi & Angelman syndromes; genetic regulation and epigenetics. Supplemental: Epigenetic inheritance.

Unit #5: Schizophrenia: The Genetic Approach to a Psychiatric Phenotype

Topics covered:

What is schizophrenia?; the epidemiology of schizophrenia; twin and adoption studies - establishing a heritable basis; what we have learned about environmental risk from twin and adoption studies; identifying schizophrenia risk alleles - limits of the positional cloning strategy, what we have learned through GWAS, and the role of rare variants. Supplemental: Genetics, race & ancestry

Unit #6: Behavioral Genetic Approaches to the Study of Intelligence/General Cognitive Ability

Topics covered:

What is intelligence?; twin and adoption studies - establishing a genetic basis; heritability and the malleability of general cognitive ability; gene-environment interplay in studies of general cognitive ability; why is general cognitive ability heritable?; genetics of intellectual disability. Supplemental: The replication crisis.

Unit #7: Genes, Environment, and Development

Topics covered:

Shared versus non-shared environment distinction; the moderating effect of development; gene-environment correlation; family socialization: a behavioral genetic perspective; gene-environment interaction I; gene-environment interaction II; genetics and aging. Supplemental: Epigenetics and twins.

Unit #8: Pulling It All Together: Summary, Public Policy, and Prospects

Topics covered:

The four laws of behavioral genetics; behavior and genomic medicine; behavioral genetics, the law and personal responsibility part I; behavioral genetics, the law and personal responsibility part II; interview with Irv Gottesman. Supplemental: Genetic prediction.

Recommended Background
The course is intended to provide an introduction to the field of behavioral genetics, so minimal background will be assumed. While students are expected to have an interest in psychology, no prior study of psychology is needed. In terms of background in genetics, high school genetics as well as a basic understanding of some standard genetic terminology (e.g., phenotype, Mendelian inheritance, chromosomes) is expected. An introductory understanding of statistical concepts including correlation, regression, analysis of variance, and statistical significance will be assumed, although the instructor will briefly review most statistical topics the first time they are used in the course.

The course is designed for students who are open-minded, analytical, and willing to confront some of the great controversies that have helped shape psychology. Target audiences include educational professionals interested in incorporating an up-to-date segment on behavioral genetic models and findings into their courses on human behavior; students from the social and biological sciences interested in genetic contributions to behavior but who do not otherwise have access to a behavioral genetics course at their home institutions; and individuals just interested in exploring questions that have perplexed scholars for millennia.

Suggested Readings
Although there will not be a required text for this course, the following is an excellent introductory text for the field:

Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral Genetics (6th ed.). New York: Worth Publishers.

I recommends Buy premimum account for High speed+parallel downloads!





Site BBcode/HTML Code:
Dear visitor, you went to the site as unregistered user.
We recommend you Sign up or Login to website under your name.
Would you like to leave your comment? Please Login to your account to leave comments. Don't have an account? You can create a free account now.

Tag Cloud

archive of news

free html hit counter