﻿ College Level Neural Nets [I] - Basic Nets Math & Practice! » GFXhome

» » College Level Neural Nets [I] - Basic Nets Math & Practice!
Information of news
25-11-2020, 05:21

### College Level Neural Nets [I] - Basic Nets Math & Practice!

Category: Tutorials

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + .srt | Duration: 83 lectures (13h 21m) | Size: 4 GB

Learn Concepts, Intuitions & Complex Mathematical Derivations For Neural Networks and deep learning !

Step By Step Conceptual Introduction For Neural Networks And Deep Learning [Even If You Are A Bner]

Understanding The Basic Perceptron[Neuron] Conceptually, Graphically, And Mathematically - Perceptron Convergence Theorem Proof

Mathematical Derivations For Deep Learning Modules

Step-By-Step Derivation Of BackPropagation Algorithm

Vectorization Of BackPropagation

Different Performance Metrics Like Performance - Recall - F1 Score - ROC & AUC

Mathematical Derivation Of Cross-Entropy Cost Function

Mathematical Derivation Of Back-Propagation Through Batch-Normalization

Different Solved Examples On Various Topics

You Should Be Familiar With College Level Linear Algebra [Advanced]

You Should Be Familiar With Multi-Variable Calculus And Chain-Rule

You Should Be Famililar With Basic Probability

Deep Learning is surely one of the hottest topics nowadays, with a tremendous amount of practical applications in many many fields.Those applications include, without being limited to, image classification, object detection, action recognition in videos, motion synthesis, machine translation, self-driving cars, speech recognition, speech and video generation, natural language processing and understanding, robotics, and many many more.

Now you might be wondering :

There is a very large number of courses well-explaining deep learning, why should I prefer this specific course over them ?

The answer is : You shouldn't ! Most of the other courses heavily focus on "Programming" deep learning applications as fast as possible, without giving detailed explanations on the underlying mathematical foundations that the field of deep learning was built upon. And this is exactly the gap that my course is designed to cover. It is designed to be used hand in hand with other programming courses, not to replace them.

Since this series is heavily mathematical, I will refer many many s during my explanations to sections from my own college level linear algebra course. In general, being quite familiar with linear algebra is a real prerequisite for this course.

Please have a look at the course syllables, and remember : This is only part (I) of the deep learning series!

Deep Learning Eeers Or College Students Who Want To Gain Deep Mathematical Understanding Of The Topic

rapidgator

nitroflare

Site BBcode/HTML Code:
Dear visitor, you went to the site as unregistered user.